UK researchers have developed a compact genetic testing device that can accurately identify Covid-19 infection, as well as a range of pathogens, or conditions including cancer in just three minutes.
The virus diagnosis device has been invented by engineers at the University of Bath, who describe it as the ‘world’s fastest Covid test’.
The prototype LoCKAmp device uses innovative ‘lab on a chip’ technology and has been proven to provide rapid and low-cost detection of Covid from nasal swabs.
The device works by rapidly releasing and amplifying genetic material from a nasal swab sample by carrying out a chemical reaction to produce a result, which can be viewed on a smartphone app.
Unlike lateral flow assay tests, commonplace during the pandemic, the LoCKAmp employs the same ‘gold standard’ genetic-based testing techniques previously reserved for lab-based PCR (polymerase chain reaction) tests, thus enabling rapid testing at laboratory-scale standard for the first time.
Made with off-the-shelf components and factory-manufactured printed circuit boards, the prototype device could be made on a mass scale quickly and at low cost, presenting care providers and public health bodies around the world with an effective new tool in virus detection, said the researchers in the paper published in the journal Lab on a Chip.
“We started researching and developing LoCKAmp during the second wave of Covid in the UK. We were confident we could create a portable, low-cost device that could carry out genetic identification of the virus, like a PCR test, within 10 minutes. We have done that, but found it can actually work within just three minutes,” said Despina Moschou, from Bath’s Centre for Bioengineering & Biomedical Technologies (CBio), who led the research.
“This is an amazing display of the possibilities of lab-on-a-chip technology, and given the low cost and adaptability of the technology to detect a range of conditions, a potentially highly valuable and unique tool for a range of healthcare settings,” she added.
As well as proving the system’s capability in analysing nasal swab samples, the LoCKAmp could also be used to carry out anonymised community-level monitoring and detection of viruses like Covid, by testing wastewater.
Using LoCKAmp to carry out ongoing, real-time analysis of wastewater could allow public health bodies to quickly detect the spread of viruses like Covid, or other infectious diseases. Doing this via wastewater can give a broader community-wide view, rather than relying on individuals to regularly test for a condition.